Урок 2 Способы задания прямых и плоскостей в пространстве Имеется п плоскостей. Следствие: В пространстве существуют четыре точки, не лежащие в одной плоскости.


Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:

Урок 2 Способы задания прямых и плоскостей в пространстве Имеется п плоскостей. Имеют ли они все общую точку,если: а) каждые две из них имеют общую точку; б) каждые три из них имеют общую точку? Выполняется, ли аналогичные утверждение для прямых в планиметрии? 1) Дано:    = c; а; а  с = K.Доказать: а   = K. 2) Запишите и докажите обратное утверждение 3) Докажите, что три попарно пересекающиеся прямые лежат в одной плоскости В пространстве через любые две данные точки проходит прямая и только одна Дано: АМ, ВМ.Доказать: !c | Ас и Вс. Определение. Две прямые, имеющие единственную общую точку, называются пересекающимися. Сколько общих точек могут иметь две прямые в пространстве? Таким образом, мы выявили два способа задания прямой в пространстве: Двумя пересекающимися плоскостями. Двумя точками. Почему такие существуют? Три различных способа задания плоскостей определяют три теоремы: А) Через три точки, не лежащие на одной прямой, Б) Через прямую и не лежащую на ней точку, В) Через две пересекающиеся прямые проходит плоскость и только одна. Следствие: В пространстве существуют четыре точки, не лежащие в одной плоскости.Для каждых двух точек можно подобрать еще две точки так, что все четыре не лежат в одной плоскости. Какая фигура таким образом задана? Нарисуйте четырехугольную пирамиду РАВСD, основанием которой является произвольный четырехугольник АВСD.Нарисуйте прямую, по которой пересекаются: а) (РАС) и (РВD);б) (РAD) и (РВС) в) (РАВ) и (РСD). Как изменится рисунок, если АВСD будет параллелограммом? Три попарно пересекающиеся прямые пересекают данную плоскость Верно ли сделан рисунок? (AB) и (CD) не лежат в одной плоскости. Докажите, что (AC)  (BD) =  Четыре точки не лежат в одной плоскости. Могут ли какие-то три из них лежать на одной прямой? Дано n прямых, проходящих через заданную точку.Докажите, что: а) существуют точки вне этих прямых; б) существуют прямые, проходящие через данную точку и не совпадающие с имеющимися прямыми; в)существует плоскость, пересекающая эти прямые. ] 1.а) Постройте сечение (ABK) тетраэдра DABC, если K – середина [CD]; б) вычислите |PK|, где Р – середина [AB], если DABC – правильный и длина его ребра равна а 2. В правильном тетраэдре DАВС c ребром а найдите |DO|, где О – центр грани АВС. В правильном тетраэдре DАВС c ребром а найдите |DO|, где О – центр грани АВС

Приложенные файлы

  • ppt 3358336
    Размер файла: 68 kB Загрузок: 0

Добавить комментарий